Network Economics: Electricity and Smart Grid Technology

Lynne Kiesling

Ikiesling@northwestern.edu

Department of Economics & Kellogg School of Management, Northwestern University

IRLE

May 18, 2008

What do I want you to take home?

- The potential for technological change to reshape the electricity industry is large
 - Capacity utilization/load factor
 - New/different services and business models that benefit consumers and reward entrepreneurs
 - Different platforms
 - Interoperability
- Ability of digital and communications
 technology to create value

What do I want you to take home?

- The value and importance of distributed knowledge in the electric power network, and how technology can help us harness it and unleash it
- Markets, with active, empowered consumers, engage and protect consumers
- Regulatory institutions currently dampen this potential, but don't have to
- The 21st century, digital electric power industry is clean and green

Technology and the electric power industry

- Physical infrastructure is almost a century old
 - Central generation
 - Grid
 - Metering
- Digital and communications changes have not (r)evolutionized value chain, as has happened in other industries
 - Network intelligence still concentrated in the substation

Structural changes in U.S. economy

- Petroleum/electric 60/40 to 40/60
- New uses of electricity
- Infrastructure investment pressures
- Global competition
- Carbon-constrained future

Challenges to electric power network

- Obsolete technology
- Aging infrastructure
 - Business as usual iron/wires \$450 bn over 20 years
 - Inefficiency of fossil-fuel central generation
- Growing electricity demand
- Meeting reliability standards and consumer expectations
- Low capacity utilization
- Lack of consumer participation

Technology can help! Smart grid

- Application of digital communication technology throughout value chain
- Self-healing
 - Automated
 - Proactive
- Motivates and includes consumers and markets
 - Automating end-use devices, prices to devices
- Reliability and security
- Power quality
- Interconnection

Smart grid technologies

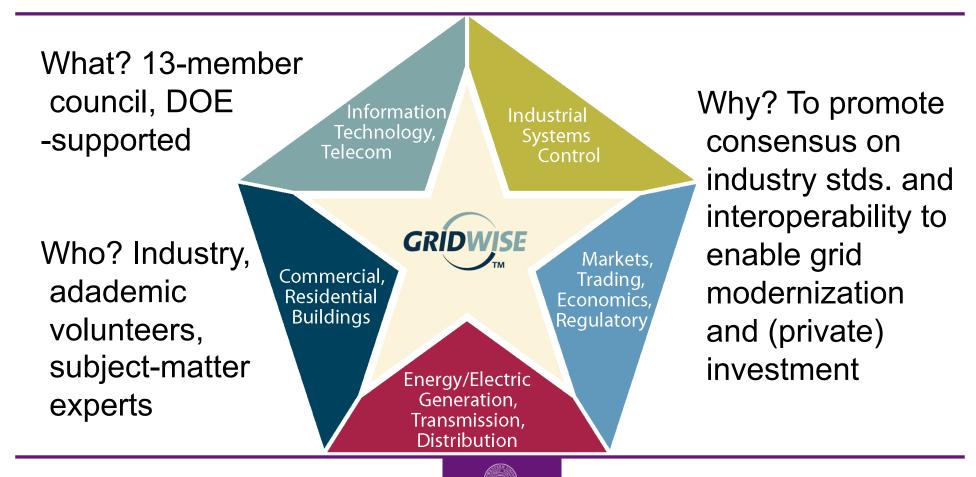
- Integrated communication technologies
- Advanced components
- Advanced controls
- Sensing and measurement
- Improved interfaces and decision support

Smart grid benefits

- Reliability
- Security and safety
- Power quality (including differentiated products)
- Enabler of robust competitive markets and consumer choice
- Operational efficiency
- Environmental quality

The digital, 21st-century network is also clean and green

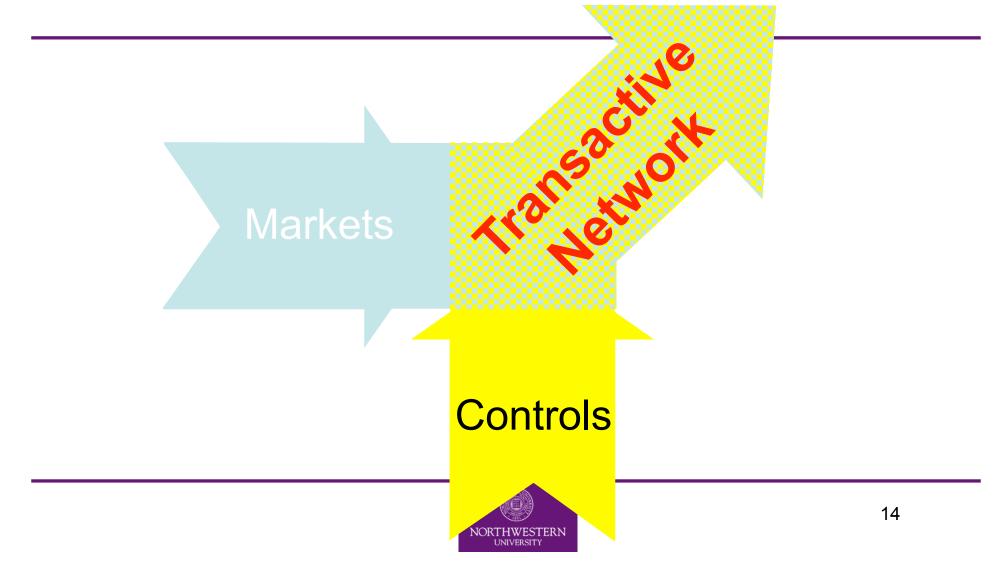
- Largely through peak smoothing
- Energy efficiency through automated building management systems, end-use metering, etc.
- Peaks disproportionately cause pollution (cycling up and down, spinning reserves)
- Automation of green power bids and offers
- Automation of "dirty" plant cycling down in response to smog alerts


EISA 2007 Sec. 1306 defines smart grid

The term Smart Grid Functions shall include:

- Ability to store, send and receive digital information (prices, costs, electricity uses, time of day, nature of use) through a combination of devices
- 2. Ability to do above to or from a computer or control device
- 3. Ability to measure and monitor electricity use as a function of time of day, power quality, source and type of generation, etc
- 4. Ability to sense and localize disruptions or changes in power flows and communicate on such instantaneously to enable automatic protective responses
- 5. Ability to detect, respond to, recover, etc relative to security threats, including cyber-sec and terrorism
- 6. Ability of appliances and equipment to respond without human intervention
- 7. Ability to use digital information for grid operations that were previously electromechanical or manual
- 8. Ability to use digital controls to manage and modify demand, congestion, and provide ancillary services
- 9. Other functions the Secretary may identify

GridWise Architecture Council


NORTHWESTERN

Mission

The mission of the Architecture Council is to <u>establish broad industry consensus</u> in support of the technical principles that enable the vast scale of interoperability necessary to transform electric power operations into a <u>system that integrates</u> <u>markets and technology</u> to enhance our socio-economic well-being and security.

Markets and Controls Merge to Form a Transactive Network

What is interoperability?

The ability of two or more networks, systems, devices, applications or components to exchange information and to use that information effectively for action -- with little or no human intervention.

- Interoperability requires interconnectivity and common protocols between hardware and software to enable effective communications, coordination and control.
- Interoperability is achieved when users' *expectations* to exchange and use information among various devices and software applications from multiple vendors or service providers are met or exceeded.

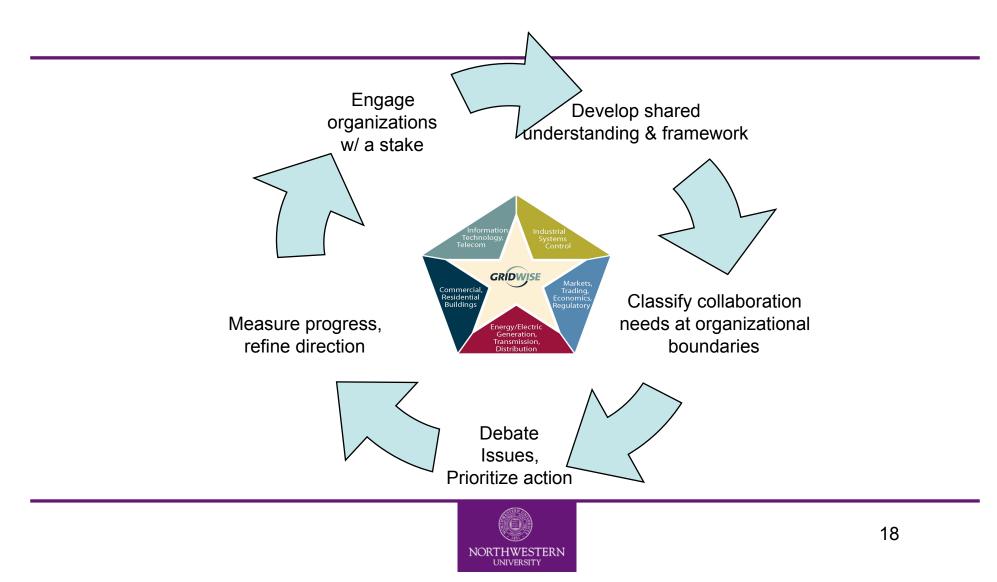
Source: EICTA INTEROPERABILITY WHITE PAPER - 21 June 2004

The impact of interoperability

Look at telecom, internet, banking and finance -competition and value come from innovative content, functionality, quality, and easy interfaces

- New value for users from innovative applications, built on a platform of interoperability and interconnectivity
- Technology convergence enabled by planned interoperability and open (non-proprietary) standards, and continued investment
- Continued investment in infrastructure
- Customer access to information about options and costs and ability to act on those choices

What new apps could evolve on the grid if we let them?



The Central Question

- How do we help enable business interaction among participants in the North American electric system and maintain that integration for 30 years and forward?
- Our action plan
 - Establish a consensus building process
 - Foster cross industry segment collaboration
 - Facilitate an interoperability framework
 - Interoperability tools, such as the Interoperability Checklist for Decision-Makers

Interoperability Path Forward

GridWise[™] Olympic Peninsula Testbed Demonstration

- "Shadow market" layered on existing utility service, with potential to "earn" on average \$100 during 1-year project
- 2 hypotheses to test
 - Does the tech/pricing combination change consumer energy use patterns (and therefore system)?
 - Do consumers automate their responses?
- Participants: 126 residential customers, 3 commercial customers w/DG, all broadband

Olympic Peninsula Project Team

U.S. DOE GridWise Program

\$2.0M project funding over two years through PNNL, technology innovator,

project manager

Bonneville Power Administration

\$75K project funding, Non-wires Program resources, in-kind labor

Portland General Electric

\$63K project funding over three years, utility site host, in-kind meter installation labor

PacifiCorp

\$50K project funding, utility site host, inkind recruitment labor

Preston Michie and Associates

Energy pricing consultant and valuation analysis

Dr. Lynne Kiesling

Whirlpool Corporation

Manufacturer of Sears Kenmore™ HE2 dryer, vendor, in-kind research labor

<u>IBM</u>

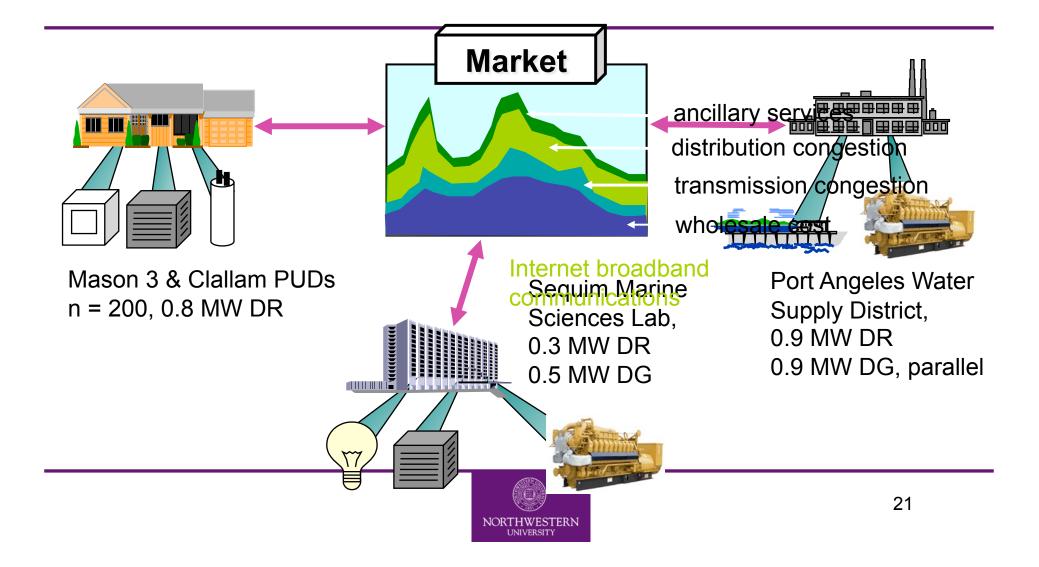
Provider of communications technologies, in-kind application development labor and WebSphere[™] software provider

Invensys Controls

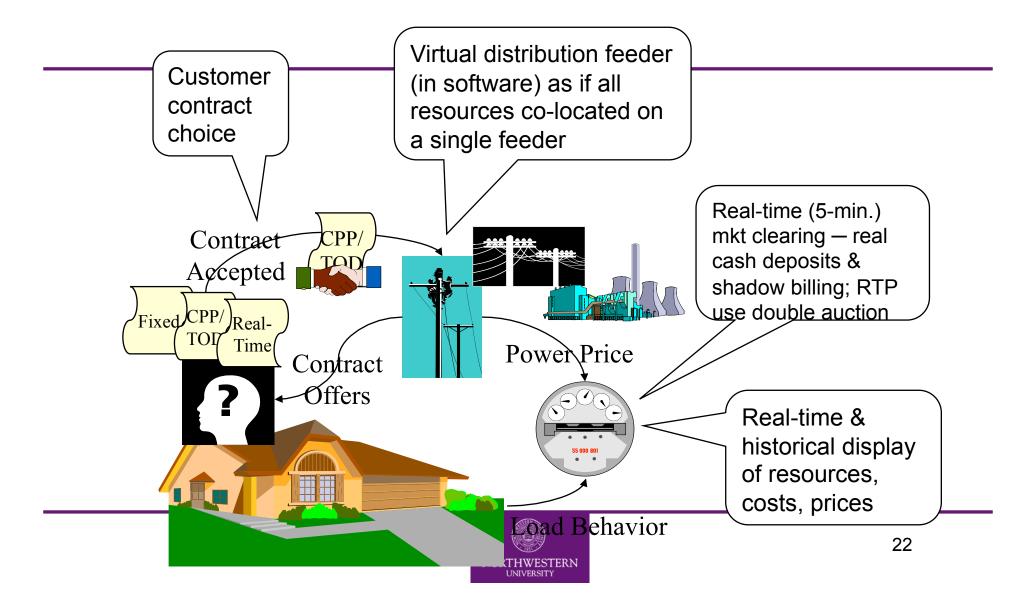
Residential communication and control equipment, vendor of GoodWatts™ system

Clallam County PUD

Utility site host, in-kind meter installation labor, in-kind recruitment labor

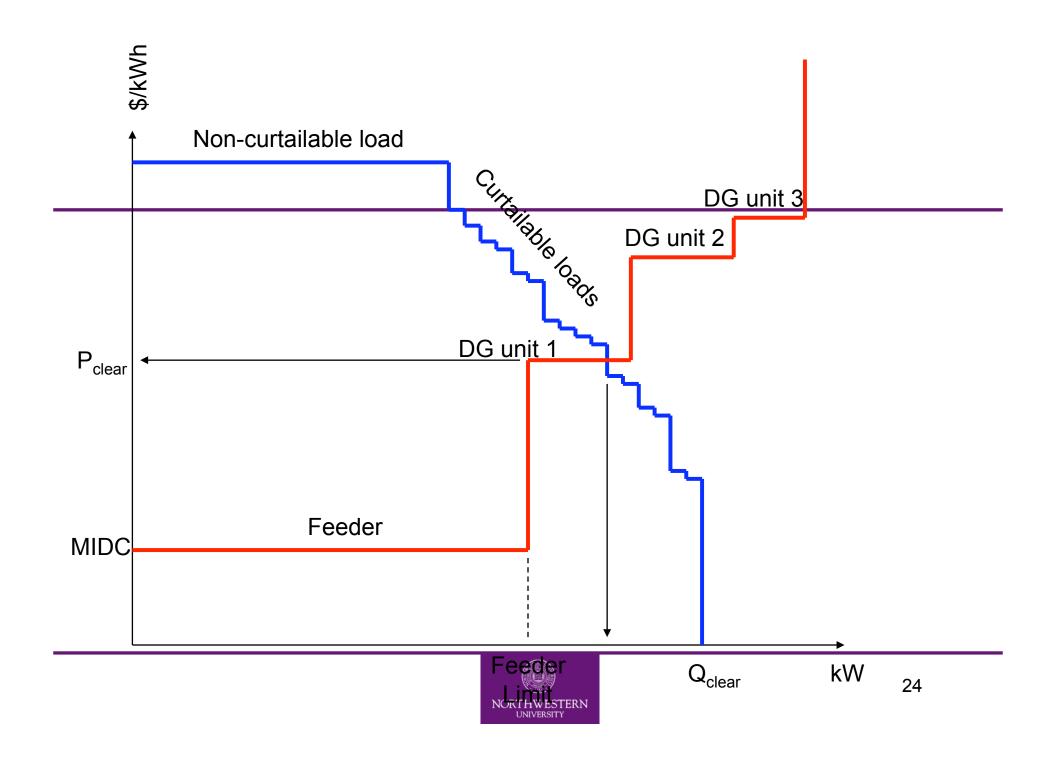

City of Port Angeles

Utility site host, in-kind meter installation labor, in-kind recruitment labor


Montana Tech

Economic experiment design consultant NORTHWESTURGE nt labor collaboration

Olympic Peninsula GridWise Demonstration


Testing Market-based Customer Incentives

Contract choice field experiment, April 2006-March 2007

- 126 broadband-enabled households chose among three contracts: Fixed (n=30), TOU (n=31), RTP (n=30)
- Control group (n=25) got technology (PCT, water heater) but did not participate in contract experiment
- RTP market clearing
 - 5-minute intervals, with price-responsive appliances & ability to automate decisions
 - Designed as a double auction
 - First ever use of a double auction in a residential retail electricity market

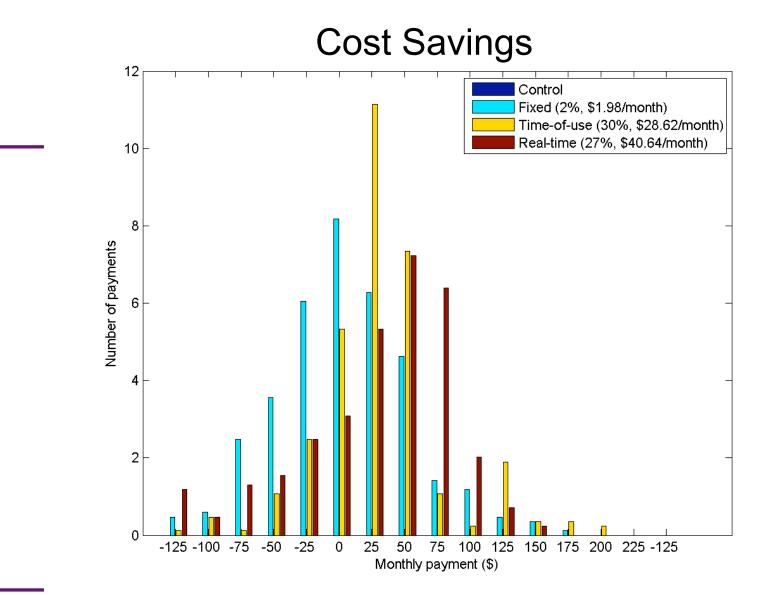
Experiment design

- Experimental groups
 - A Normal users (no tech, no contract choice)
 - B Technology only (control group, no contract choice)
 - C Fixed price (reflects forward price)
 - D–TOU+CPP
 - E–RTP
- Experiment : Ask customers contract choice preference
 - Rank first, second, third preference for contract choice
- Results: 2/3 of households listed RTP as their first choice
 - Contradicts "common knowledge"
 - Reflects willingness to accept price risk when consumers know that they have enabling technology to automate their responses to the price signals
- PNL performed extensive agent-based simulation of system and various parameters (prices, elasticities, etc.) before going live in April 2006

TOU design

- Peak and off-peak rate
 - Peak 6-9 AM & 6-9 PM
 - Did vary twice during year, communicated to households in advance
 - P_{peak}=\$0.1215/kw
 - P_{offpeak}=\$0.04119/kw
- CPP: critical peak price
 - Could be called without warning
 - Called once, November 2006: \$350/MW (\$0.35/ kw)

Preliminary results


- Based on hourly aggregation (i.e., for RTP average over 12 mkt clearings)
- Average prices paid by contract type (per MW, s.d. in parens)
 - Fixed: \$81 (0)
 - TOU: \$63.27 (35.9)
 - RTP: \$49.20 (47.16)

Preliminary results (cont.)

- Average hourly consumption per household by contract type (kilowatts, s.d. in parens)
 - Control: 2.116 (1.25)
 - Fixed: 1.79 (0.84)
 - TOU: 1.42 (0.77)
 - RTP: 2.1 (1.0)
- Note low mean and std. dev. for TOU group
- RTP height in part an artifact of granularity of the building and appliance automation

Preliminary energy use result 1: RTP group

- Peak consumption for RTP group reduced 15-17% relative to counterfactual (what peak would have been without dynamic pricing)
- Consumption for RTP group rose 4% overall
- Note that this is the first implementation of a double auction RTP design

Preliminary energy use result 2: TOU

- Hourly price elasticity of demand = -0.17
- Peak consumption reduction of 20% relative to the fixed price group
- TOU pricing induces more conservation, while RTP pricing induces more intertemporal smoothing
 - Behavioral differences among different contract types is an unexplored area of electricity market design and institutional design

Preliminary result 3: RTP & automation

- Fine-grained ability to respond to prices in 5-minute intervals changes the nature of the problem
- Distributed automation + RTP => complex adaptive system
- 5-minute price elasticity seen in submitted bids follows a power law distribution, not a normal distribution
- Implication: these results can scale to larger implementation, and indicate robustness and selforganization

Results summary

- Dynamic pricing + end-use technology
 - Make distributed control possible
 - Reduce pressure on infrastructure, increase reliability
 - Increase time between investments
- Residential consumers are willing to automate behavior and take on price risk
- Behavioral differences across contracts
 - TOU: reduced energy use, conservation
 - RTP: load smoothing

Conclusions

- Digital technology can empower consumers and create new value in this industry as it has in others; can align economic and environmental values
- Technology can't do that in a vacuum, which is why institutional design and research matter
 - Regulatory change to reduce barriers to new technology innovation and implementation
 - Dynamic pricing, rate redesign are crucial
- Highly distributed automation changes the nature of the question to one of complex adaptive systems
- The current system was built for centralized control, but we show that it is capable of distributed control driven by consumers

How can we bring this smart network into being?

- Testbeds/demonstrations
- Regulatory innovation-remove barriers to technological change, to interoperability, and to technology deployment
- Regional start-ups, centers of smart network innovation
- Nodes that are dispersed will grow together, linked by telecom into virtual smart energy networks

